Supposed you already have parametric equations for a curve with a finite domain for the parameter, but you want to change the direction and/or speed of travelling along the curve.
This can be accomplished by "changing the timeline".
For example,

$$
x=2 t-1
$$

the parametric equations $\begin{aligned} & y=t^{2}-3 t\end{aligned}$ for $t \in[-1,3]$ correspond to the curve on the right.
At time $t=-1$, the curve starts at $(x, y)=(-3,4)$ (the leftmost point) and
 at time $t=3$, the curve ends at $(x, y)=(5,0)$ (the rightmost point).
In between, the curve was traversed from left to right.
Suppose you want to traverse the curve from right to left instead, and instead of taking $3-(-1)=4$ units of time to do so, you want to take only 2 units of time.

Create a new time variable T and determine how the values of T correspond to the values of the original time variable t.
In this case, let's say you want $T \in[0,2]$ (so T spans $2-0=2$ units of time).
At $T=0$, you want to start the curve at $(x, y)=(5,0)$, which corresponds to $t=3$.
At $T=2$, you want to end the curve at $(x, y)=(-3,4)$, which corresponds to $t=-1$.

So, $t=3$ when $T=0$, and $t=-1$ when $T=2$.
Now find a linear function for the original time variable t in terms of the new time variable T.

$$
\begin{aligned}
& t=m T+b \\
& m=\frac{\Delta t}{\Delta T}=\frac{3-(-1)}{0-2}=-2 \\
& 3=-2(0)+b, \text { so } b=3 \\
& \text { So, } t=-2 T+3
\end{aligned}
$$

Substitute this expression for the original time variable into the original parametric equations to get new equations in terms of the new time variable.

$$
\begin{aligned}
& x=2 t-1 \\
& y=t^{2}-3 t
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x=2(-2 T+3)-1 \\
& y=(-2 T+3)^{2}-3(-2 T+3)
\end{aligned} \Rightarrow \quad \begin{aligned}
& x=-4 T+5 \\
& y=4 T^{2}-6 T
\end{aligned} \text { with } T \in[0,2]
$$

The final parametric equations and domain correspond to the curve on the right, as desired.

